skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wenjian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report a novel conjugation of N‐terminal cysteines (NCys) that proceeds with fast kinetics and exquisite selectivity, thereby enabling facile modification of NCys‐bearing proteins in complex biological milieu. This new NCys conjugation proceeds via a thiazolidine boronate (TzB) intermediate that results from fast (k2: ≈5000 m−1 s−1) and reversible conjugation of NCys with 2‐formylphenylboronic acid (FPBA). We designed a FPBA derivative that upon TzB formation elicits intramolecular acyl transfer to give N‐acyl thiazolidines. In contrast to the quick hydrolysis of TzB, the N‐acylated thiazolidines exhibit robust stability under physiologic conditions. The utility of the TzB‐mediated NCys conjugation is demonstrated by rapid and non‐disruptive labeling of two enzymes. Furthermore, applying this chemistry to bacteriophage allows facile chemical modification of phage libraries, which greatly expands the chemical space amenable to phage display. 
    more » « less
  2. Abstract Triggering lysosome‐regulated immunogenic cell death (ICD, e.g., pyroptosis and necroptosis) with nanomedicines is an emerging approach for turning an “immune‐cold” tumor “hot”—a key challenge faced by cancer immunotherapies. Proton sponge such as high‐molecular‐weight branched polyethylenimine (PEI) is excellent at rupturing lysosomes, but its therapeutic application is hindered by uncontrollable toxicity due to fixed charge density and poor understanding of resulted cell death mechanism. Here, a series of proton sponge nano‐assemblies (PSNAs) with self‐assembly controllable surface charge density and cell cytotoxicity are created. Such PSNAs are constructed via low‐molecular‐weight branched PEI covalently bound to self‐assembling peptides carrying tetraphenylethene pyridinium (PyTPE, an aggregation‐induced emission‐based luminogen). Assembly of PEI assisted by the self‐assembling peptide‐PyTPE leads to enhanced surface positive charges and cell cytotoxicity of PSNA. The self‐assembly tendency of PSNAs is further optimized by tuning hydrophilic and hydrophobic components within the peptide, thus resulting in the PSNA with the highest fluorescence, positive surface charge density, cell uptake, and cancer cell cytotoxicity. Systematic cell death mechanistic studies reveal that the lysosome rupturing‐regulated pyroptosis and necroptosis are at least two causes of cell death. Tumor cells undergoing PSNA‐triggered ICD activate immune cells, suggesting the great potential of PSNAs to trigger anticancer immunity. 
    more » « less